
Scalable High-Order Multi-Material ALE Simulations

VESELIN DOBREV1 , IAN KARLIN1 , TZANIO KOLEV1
AND ROBERT RIEBEN2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
2Weapons and Complex Integration, Lawrence Livermore National Laboratory

Abstract: BLAST is a mutli-material ALE hydrodynamics code which imple-
ments the high-order finite element formulations of [1,2,3,4] and is based on the
finite element software library, MFEM [5]. We consider recent performance op-
timizations to the code which target both the sparse and dense linear algebra
components of the high-order ALE algorithm and show good strong scaling
properties. We also highlight recent developments and applications of the algo-
rithm in challenging multi-material ALE simulations.

The BLAST Multi-Material ALE Algorithm
BLAST solves the Euler equations using a high-order finite element ALE for-
mulation based on three phases:

• Lagrangian phase: solve on moving curvilinear mesh

• Mesh optimization phase: harmonic or inverse-harmonic smoothing

• Remap phase: conservative and monotonic DG advection based remap

On a semi-discrete level our method can be written as
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where F is the rectangular force matrix, ηk, ρk, ek are the indicator, density
and energy for material k with discontinuous basis φ and v is the velocity with
continuous vector basis w.
The mass and advection matrices are defined as:
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The algorithm has memory bandwith bound kernels involving distributed,
sparse matrices and compute bound kernels involving local, dense matrices.

SLI improves Sparse Linear Solver Perfromance
The momentum equations in the Lagrange and Remap phases require solving
a sparse, global linear system which is a memory bandwidth bound kernel.

PCG is typically used where a
global (parallel) reduction is re-
quired after each iteration to com-
pute residuals.
An alternative approach is Sta-
tionary Linear Iteration (SLI), a se-
quence of improving approxima-
tions based on mass lumping:
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SLI has attractive properties:

• Convergence:

lim
n→∞

Bn = M
−1

• Mass conservative

• Small, fixed iteration count

• No global reduction

Analytic projection using SLI

(top), Q2 ALE using PCG

(left) versus 4 iterations of SLI
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Optimizations for Dense Linear Algebra Kernels
The force matrix F is assembled from zonal matrices Fz . Calculating each Fz is
a compute bound kernel. We have explored optimizations based on:

• Fixing small, dense matrix sizes at compile time (via templating) for substantial
optimization imrpovements

• Use of “partial assembly” alogorithms which minimize data motion and integer
instruction complexity as order is increased, at the expense of more floating point

Strong parallel scaling comparrison to ARES code for 2D sedov benchmark (left) and
growth of FP, memory, runtime as a function of order for fixed DoF count (right)

Application to 2Drz/3D Multi-material ALE Simulations
BLAST supports high-order multi-material ALE hydrodynamics on a wide va-
riety of meshes, including curved tetrahedral elements.

BRL81 shaped charge simulation in 2Drz using Q2 ALE (left) and simplified shaped
charge in 3D using Q2 ALE on a curved tetrahderal mesh (right).

Current Research and Development Efforts
We continue to research and develop new methods and capabilities:

Example of preliminary static, non-confroming mesh refinement capability (left) and
Q2 H(Div) single group radiation diffusion on the crooked pipe benchmark (right)
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